3.4. Lacunarity
If in a fractal distribution, we count for each point the total number of neighbors within a ball of radius r, M(r), we can see that this quantity follows roughly a power-law
![]() |
(5) |
the exponent D is the so-called mass-radius dimension. Taking the average over all the points we get an estimate of the integral correlation function N( < r) = <M(r)>. In this section, we show how the correlation dimension alone is not enough to characterize the fractal structure.
The variability of the prefactor F in Eq. 5 can be used as a measure to distinguish between different fractal patterns having the same correlation dimension. This variability provides an indicator of the lacunarity. Several alternative quantitative measures have been proposed in the literature [40, 41, 42]. According to Ref. 43, we adopt the following numerical definition for the lacunarity, which is basically the second-order variability measure of the prefactor F in Eq. 5,
![]() |
(6) |
We first illustrate these measure on several two-dimensional point patterns.
The bottom panel of Fig. 6 shows the relation
log N( < r) versus log r for the four
examples. The power-law behavior N( < r)
rD2 is clearly appreciated in the
diagram, with scaling exponent
D2
1.6 for all cases.
A more detailed analysis of the local correlation dimension
is reported in the central diagram of panel (e),
where we show how D2 changes with the
scale. In this case, D2 has been calculated as the
slope of the
local linear regression fit to a small portion of the curve. This
sliding window estimate of the local value of D2 is very
sensitive to any possible non fractal behavior that could not well
be appreciated in the plot of log N( < r). The width of the
sliding window used in the estimation is shown as an arrow in
the bottom panel. We can see that in all the analyzed point patterns the
empirical local correlation dimension oscillates around
D2
1.6. It is therefore rather hard to find significative
differences between the analyzed patterns through the function
N( < r) or from D2(r).
The differences, however, are revealed by the lacunarity measure
(Eq. 6) which is shown in the top diagram of panel (e).
The lacunarity curves
(r), associated
to each pattern, show
clear differences between them providing us with a valuable
information about the texture of each process.
The simple fractal model in panel (c) shows rather constant
behavior of with the
scale, displaying only very small oscillations around
0.1. By contrast, the
multifractal set, being quite similar to the eye to the simple
fractal, shows a completely different lacunarity curve, with a
characteristic monotonic decreasing behavior from
0.7, at the smallest
scales, to
0.2 at the larger
scales. In this case the lacunarity is associated to the
inhomogeneous distribution of the measure on the fractal support
[40,
41]
in which we can find highly populated
regions (where the values of the measure are very large) together
with other nearly empty locations (where the measure takes the
lowest values). The lacunarity measure reveals the small scale
heterogeneity of the multifractal set. Only at large scales the
curve approaches that of the simple fractal pattern.
The lacunarity curve of the Soneira and Peebles model (panel (b))
is quite similar to that of the multifractal cascade model, with a
decreasing behavior of
with the scale. We can see in the
plot that
varies from
0.45 at the smallest scales to
0.08 at the largest analyzed distances. Because the different
clumps overlap with each other, the set presents scale-dependent
structure which cannot be discovered by analyzing the correlation
function or the correlation dimension alone.
It is quite remarkable how the lacunarity curve of this model
differs from the one corresponding to the Rayleigh-Lévy flight,
although both spatial patterns seem quite similar to the eye.
Within the first 2/3 of the analyzed scale range, the behavior of
with the scale, for the
Rayleigh-Lévy dust, is rather
flat with oscillations around
0.4. It is, therefore,
qualitatively similar to the behavior of the simple fractal
pattern, although showing a higher value of
and displaying
oscillations with higher amplitude. The large-scale properties of
finite regions of Rayleigh-Lévy dusts are extremely variable,
and the rapid decrease of lacunarity at larger scales for the
sample shown in panel (a) is typical only for dense subregions of
a Rayleigh-Lévy flight.