IPAC

Home

NASA/IPAC Extragalactic Database

  • Home
  • Search Objects
    • By Name
    • Near Name or Position (Cone)
    • In Refcode
    • By Parameters
  • Literature
    • References by Author Name
    • Reference Lookup
    • Nomenclature
  • Services
    • Gravitational Wave Followup
      • Overview
      • Events
    • Ticket Status
    • Level5
      • Knowledge Base
      • Glossary
    • Classic Home Page
  • Tools
    • Coordinate Calculator
    • Extinction Calculator
    • Velocity Calculator
  • Information
    • Overview
      • News
      • Archived Release Notes
    • User Guides
      • Search Objects
      • Calculators
      • Program Interfaces
      • Database
      • Tutorials
      • Best Practices
      • Search & Retrieval FAQ
      • Scientific Calculations FAQ
      • Known Issues
      • Discontinuing Services
    • Holdings
      • Nomenclature
      • Counts
      • Graphics
      • Data Sets
    • References
      • Articles about NED
      • Brochure (pdf)
      • Cosmology Calculators
      • Extinction-Law Calculators
      • Related Sites
    • Community
      • Users Committee
      • Ambassadors
    • Team
    • Contact Us

You are here

Home » Literature » Reference Lookup

Help Reference Information

TitleMetallicity Effects on Dust Properties in Starbursting Galaxies
AuthorsEngelbracht, C. W.; Rieke, G. H.; Gordon, K. D.; Smith, J. -D. T.; Werner, M. W.; Moustakas, J.; Willmer, C. N. A.; Vanzi, L.
Bibcode

2008ApJ...678..804E   Search ADS ↗

AbstractWe present infrared observations of 66 starburst galaxies over the full range of oxygen abundances observed in local star-forming galaxies, from 12 + log (O/H) = 7.1 to 8.9. The data include imaging and spectroscopy from the Spitzer Space Telescope, supplemented by ground-based near-infrared imaging. We confirm a strong correlation of aromatic emission with metallicity, with a threshold at 12 + log (O/H) ~ 8. We show that the far-infrared color temperature of the large dust grains increases toward lower metallicity, peaking at a metallicity of 8 before turning over. We compute dust masses and compare them to H I masses from the literature to derive the ratio of atomic gas to dust, which increases by nearly 3 orders of magnitude between solar metallicity and a metallicity of 8, below which it flattens out. The abrupt change in aromatic emission at mid-infrared wavelengths thus appears to be reflected in the far-infrared properties, indicating that metallicity changes affect the composition of the full range of dust grain sizes that dominate the infrared emission. Although the great majority of galaxies show similar patterns of behavior as described above, there are three exceptions, SBS 0335-052E, Haro 11, and SHOC 391. Their infrared SEDs are dominated energetically by the mid-IR near 24 μm rather than by the 60-200 μm region. In addition, they have very weak near-infrared outputs and their SEDs are dominated by emission by dust at wavelengths as short as 1.8 μm. The latter behavior indicates that the dominant star-forming episodes in them are extremely young. The component of the ISM responsible for the usual far-infrared emission appears to be either missing or inefficiently heated in these three galaxies.
Objects

67 Objects    Search NED ↙

Reload form

The NASA/IPAC Extragalactic Database (NED) is funded by the
National Aeronautics and Space Administration under
Award Number 80NSSC21M0037, and operated by the California Institute of Technology.

  • IPAC
  • Caltech
  • NASA
  • About NED
  • Acknowledging NED
  • Connect with NED:
    • EMail
    • facebook
    • youtube
Copyright © 2025, California Institute of Technology
back up ↑