In the proceedings of the May 2003 STScI Symposium, "The Local Group as an Astrophysical Laboratory".
astro-ph/0308511

For a PDF version of the article, click here.


PRIMORDIAL NUCLEOSYNTHESIS

Gary Steigman

Department of Physics, The Ohio State University, Columbus, OH 43210, USA


Abstract. The primordial abundances of deuterium, helium-3, helium-4, and lithium-7 probe the baryon density of the Universe only a few minutes after the Big Bang. Of these relics from the early Universe, deuterium is the baryometer of choice. After reviewing the current observational status of the relic abundances (a moving target!), the baryon density determined by big bang nucleosynthesis (BBN) is derived. The temperature fluctuation spectrum of the cosmic background radiation (CBR), established several hundred thousand years later, probes the baryon density at a completely different epoch in the evolution of the Universe. The excellent agreement between the BBN- and CBR-determined baryon densities provides impressive confirmation of the standard model of cosmology, permitting the study of extensions of the standard model. In combination with the BBN- and/or CBR-determined baryon density, the relic abundance of 4He provides an excellent chronometer, constraining those extensions of the standard model which lead to a nonstandard early-Universe expansion rate.


Table of Contents

Next