IPAC

Home

NASA/IPAC Extragalactic Database

  • Home
  • Search Objects
    • By Name
    • Near Name or Position (Cone)
    • In Refcode
    • By Parameters
  • Literature
    • References by Author Name
    • Reference Lookup
    • Nomenclature
  • Services
    • Gravitational Wave Followup
      • Overview
      • Events
    • Ticket Status
    • Level5
      • Knowledge Base
      • Glossary
    • Classic Home Page
  • Tools
    • Coordinate Calculator
    • Extinction Calculator
    • Velocity Calculator
  • Information
    • Overview
      • News
      • Archived Release Notes
    • User Guides
      • Search Objects
      • Calculators
      • Program Interfaces
      • Database
      • Tutorials
      • Best Practices
      • Search & Retrieval FAQ
      • Scientific Calculations FAQ
      • Known Issues
      • Discontinuing Services
    • Holdings
      • Nomenclature
      • Counts
      • Graphics
      • Data Sets
    • References
      • Articles about NED
      • Brochure (pdf)
      • Cosmology Calculators
      • Extinction-Law Calculators
      • Related Sites
    • Community
      • Users Committee
      • Ambassadors
    • Team
    • Contact Us

You are here

Home » Literature » Reference Lookup

Help Reference Information

TitleThe Minimum Amount of Stars a Galaxy Will Form
AuthorsWarren, Bradley E.; Jerjen, Helmut; Koribalski, Bärbel S.
Bibcode

2007AJ....134.1849W   Search ADS ↗

AbstractWe present an analysis of the atomic hydrogen and stellar properties of 38 late-type galaxies in the local universe covering a wide range of H I mass-to-light ratios (Script M/LB), stellar luminosities, and surface brightnesses. Combining the results with those of four other well-studied dwarf galaxies known for their unusually large H I contents, we identified an upper envelope for the Script M/LB as a function of galaxy luminosity. This implies an empirical relation between the minimum amount of stars a galaxy will form and its initial baryonic mass. We also find that the star density systematically decreases with increasing Script M/LB, making the galaxies optically more elusive. While the stellar mass of a galaxy seems to be only loosely connected to its baryonic mass, the latter quantity is strongly linked to the galaxy's dynamical mass as it is observed in the baryonic Tully-Fisher relation. We find that dwarf irregular galaxies with generally high Script M/LB ratios follow the same trend as defined by lower Script M/LB giant galaxies but are underluminous for their rotation velocity to follow the trend in a stellar mass Tully-Fisher relation, suggesting that the baryonic mass of the dwarf galaxies is normal but they have failed to produce a sufficient amount of stars. Finally, we present a three-dimensional equivalent to the morphology-density relation which shows that high Script M/LB galaxies preferentially evolve and/or survive in low-density environments. We conclude that an isolated galaxy with a shallow dark matter potential can retain a large portion of its baryonic matter in the form of gas, only producing the minimum quantity of stars necessary to maintain a stable gas disk.
Objects

85 Objects    Search NED ↙

Reload form

The NASA/IPAC Extragalactic Database (NED) is funded by the
National Aeronautics and Space Administration under
Award Number 80NSSC21M0037, and operated by the California Institute of Technology.

  • IPAC
  • Caltech
  • NASA
  • About NED
  • Acknowledging NED
  • Connect with NED:
    • EMail
    • facebook
    • youtube
Copyright © 2025, California Institute of Technology
back up ↑